The Future of Veterinary Genetic Testing

Print/View PDF

Sign in to continue reading this article

Not registered? Create an account for free to read full articles on

To access full articles on, please sign in below.

Busy? Sign in Faster. Sign into with your social media account.

Genetically based (ie, inherited) diseases are prevalent in dogs. Purebred dogs carry the highest number of disease-causing genetic mutations, but these mutations also occur in mixed-breeds. Breed-specific genetic diseases, which are associated with most canine breeds, result from selective breeding for specific cosmetic and behavioral traits. Inbreeding to achieve desirable traits limits a breed’s gene pool and perpetuates genetic mutations, both benign and pathologic, that affect every body system.1,2 For example, the cardiac and cranial abnormalities seen in many Cavalier King Charles spaniels can be the unintended consequences of selective cosmetic breeding.1

Genetic testing, which has been used to identify inherited diseases in humans since the 1950s—beginning with Down syndrome and cystic fibrosis3—is becoming an important diagnostic tool in veterinary medicine. Collaborative efforts by the One Health Initiative and the National Institutes of Health, as well as genome-wide studies such as the National Human Genome Research Institute Dog Genome Project4 and the Broad Institute Dog Genome Project,5 have greatly advanced veterinary genetics in the past several decades. Efforts to map the canine genome began in the United States in 2003; the results of 2 studies—one of a poodle and one of a purebred boxer—were published in 2004.2,6,7 Canine genetic research has since expanded to include additional diseases and breeds. 

Patterns of Inheritance & Associated Genetic Diseases2,6,19
Inheritance TypeDescriptionMost Common Genetic Diseases
Autosomal recessiveBoth parents must pass on the recessive gene for offspring to be affected
  • Von Willebrand’s disease (type I)
  • Ichthyosis
  • Juvenile hereditary cataracts (multibreed)
Autosomal dominantOnly one parent needs to pass on the defective gene for the disease to occur
  • Juvenile hereditary cataracts (Australian shepherd dog)
  • Multidrug resistance
  • Primary hyperparathyroidism
  • Progressive retinal atrophy (type A)
Sex-linkedDiseases caused by a mutation located on the sex chromosomes (X/Y) that leads to a sex predominance in mutation and potential disease
  • Hemophilia B
  • Hereditary nephritis
  • Progressive retinal atrophy (X-linked)
  • Severe combined immune-deficiency

Genetic Mutations

Most mutations occur and recur because of parental genetic influence and environmental adaptation. The mutations influence many characteristics within an offspring’s phenotype (eg, coat length and color, behavior, eye color), but some genetic coding errors during development can cause specific disease states. 

Genetics 101

  • Dogs have 39 chromosome pairs, with each chromosome composed of hundreds to thousands of genes.
  • The first 38 nonsex chromosome pairs are referred to as autosomes.
  • The 39th sex chromosome pair is called an allosome.
  • Genetic diseases are the result of a mutation of a single gene in a chromosome or multiple genes in 1 or more chromosomes.  
  • Mutation in a gene can result in both benign and pathogenic changes in offspring.

A mutation may then be transferred to offspring through breeding.1 (See Genetics 101.) A mutation in a single gene (ie, monogenic) is characterized as autosomal recessive, autosomal dominant, or sex-linked. (See Table 1.)

  • Autosomal recessive: Most genetic diseases in humans and dogs are autosomal recessive. (See Table 2.) Puppies may be carriers of the genetic defect (ie, ≈50%), be affected by the disease (ie, ≈25%), or be genetically normal (ie, ≈25%).1,6,8
  • Autosomal dominant: These mutations are less prevalent but still common. The disease state is present if this type of mutation is passed to the offspring from only one parent.
  • Sex-linked: These chromosomal diseases occur because of a mutation on the sex chromosomes, leading to a sex disposition in some inherited diseases.6,8 Their prevalence is unknown; however, the number of sex-linked testable diseases is much fewer than autosomal recessive and dominant mutations.2

Mutations that occur in multiple genes may result in disease conditions more difficult to identify. Their prevalence is unknown, although research is ongoing. Current known polygenic diseases causing mutations include patent ductus arteriosus in poodles and progressive retinal atrophy in the Welsh corgi.6,9 These mutations are difficult to identify because they require breeding studies with a large number of participants. Determining the type of inheritance (maternal vs paternal) in polygenic diseases is not specific but can indicate the prevalence of a particular polygenic mutation in a group.10

Punnett Square: Autosomal Recessive
  Paternal (Rr)
Maternal (Rr)RRR (normal)Rr (carrier)
 rRr (carrier)rr (disease state)

Abbreviations: R, dominant (normal gene); r, recessive (disease-causing mutation)


Genetic Testing

Genetic testing refers to the identification of a genetic mutation, which can identify potential diseases or the possibility of offspring carrying the same mutation and disease potential.11-15

The ability to identify carriers and affected offspring offers potential benefits to veterinarians, clients, and breeders. For example, dogs suspected of having certain genetic diseases can be identified at a younger age by minimally invasive procedures that require only cheek swabs or blood, urine, or semen samples submitted to reliable laboratories. Preventive and/or advanced care can then be initiated at an earlier age.

Related Articles
Top 5 Conditions Diagnosed On Physical Examination
Diagnostic Tests: Overview for Veterinary Technicians
How to Implement a Senior Wellness Program

Genetic testing could become part of existing wellness programs to help identify genetic factors that affect the length and quality of a dog’s life. Carriers can be removed from breeding programs or bred more selectively with partners that are genetically normal to decrease the prevalence of genetic diseases.1,11-13,16

Genetic testing in dogs is currently limited, however, and caution should be used when recommending testing to clients and breeders. Most tests check only for single gene defects, yet some diseases (eg, canine inherited cataracts) are caused by several different genetic mutations.17 Many tests identify only the genetic markers for a disease rather than the specific genetic mutation and existence of illness. Genetic markers only identify a series of genes that indicate the possibility of mutation. Testing for genetic markers can be useful, however, as their presence can indicate disease-causing genes, and the affected animal can be monitored more closely for disease signs.6,15 Clients and breeders must be counseled on the different tests available from veterinary professionals and other advertised sources, and clients must know how best to interpret the results of these tests. (See Table 3.)

Commonly Performed Genetic Tests17,18
TestCondition Testing For
Uric acid DNADiseases characterized by the formation of bladder and/or kidney stones
Degenerative myelopathy in canine breedsA degenerative disease of the spinal cord that progresses to paraplegia
Hereditary nasal parakeratosis in Labrador retrieversA disease characterized by dry, rough crusts that develop on the nose tip
Multidrug resistanceNeurologic signs that may develop in dogs as a result of common drugs (eg, ivermectin use in collies)
Exercise-induced collapseMuscle weakness and collapse after short periods of activity
Pyruvate kinase deficiency in West Highland terriers and basenjisA red blood cell defect that leads to anemia and liver failure
Von Willebrand’s diseaseThe most common inherited bleeding disorder seen in dogs
Factor VII deficiencyInherited coagulopathy in some breeds (eg, beagle, Airedale, giant schnauzer, Scottish deerhound)
Juvenile hereditary cataractsJuvenile cataracts
Progressive retinal atrophy (multigene)Atrophy of the retina that causes progressive blindness


Canine genetic testing offers a wide range of possible benefits for veterinary medicine. Ongoing research, including clinical trials studying common diseases (eg, progressive retinal atrophy, idiopathic epilepsy, glaucoma, intervertebral disc disease) and continued mapping of the canine genome will help improve diagnostic, preventive, and treatment options for genetic conditions.18

Behavioral genetics is an emerging research field that has demonstrated the inheritability of certain behaviors such as flank sucking in Dobermans and the herding ability of some breeds (eg, border collies, German shepherd dogs, Australian cattle dogs).16 Identifying dogs affected by these mutations may enable them to receive early environmental modification to counter potential negative behaviors. Improved testing accuracy and decreased testing costs will help establish canine genetic testing as a powerful diagnostic tool.

1Use caution when recommending canine genetic testing to clients and breeders because the tests themselves—and what they identify—are currently limited.

2If clients or breeders do elect to test their dogs, counsel them on the different tests available and how the results should be interpreted.

3Stay up-to-date on canine genetic testing because reduced costs and improvements in accuracy will help establish it as a powerful diagnostic tool that eventually may be included in wellness programs.

References and author information Show
  1. Bell JS. Common canine genetic disorders: diagnosis and management. Paper presented at: Western Veterinary Conference; February 17–21, 2013; Las Vegas, NV. Accessed June 5, 2017.
  2. McPhee CG. Available canine genetic tests. Veterinary Medicine. Published December 1, 2011. Accessed June 5, 2017.
  3. Genetic testing: how it is used for healthcare [fact sheet]. National Institutes of Health. Updated October 2010. Accessed June 2017.
  4. The NHGRI Dog Genome Project. Updated April 26, 2017. Accessed June 5, 2017.
  5. Dog Genome Project. Broad Institute. Updated 2017. Accessed 2017. 
  6. McPhee CG. Advances in canine genetic testing—and what these tests mean for you. Vet Med. Published December 1, 2011. Accessed June 5, 2017.
  7. Parker HG, Kim LV, Sutter NB, et al. Genetic structure of the purebred domestic dog. Science. 2004;304(5674):1160-1164.
  8. Kirk KE. Patterns of inheritance. Published 2002. Accessed 2017.
  9. Rishniw M. Genetics and genetic testing of canine and feline heart disease. Paper presented at: Tufts' Canine and Feline Breeding and Genetics Conference; September 16–17, 2011; Boston, MA. Accessed June 19, 2017.
  10. Parker HG, Meurs KM, Ostrander EA. Finding cardiovascular disease genes in the dog. J Vet Cardiol. 2006;8(2):115-127.
  11. Lindblad-Toh K. The genome. In: Ettinger SJ, Feldman EC, eds. Textbook of Veterinary Internal Medicine Expert Consult. 7th ed. St. Louis, MO: Elsevier Saunders; 2010:17-22.
  12. Argyle DJ. Gene therapy. In: Ettinger SJ, Feldman EC, eds. Textbook of Veterinary Internal Medicine Expert Consult. 7th ed. St. Louis, MO: Elsevier Saunders; 2010:23-27.
  13. Breen M. Clinical genomics. In: Ettinger SJ, Feldman EC, eds. Textbook of Veterinary Internal Medicine Expert Consult. 7th ed. St. Louis, MO: Elsevier Saunders; 2010:28-31.
  14. Simpson S, Edwards J, Ferguson-Mignan TF, Cobb M, Mongan NP, Rutland CS. Genetics of human and canine dilated cardiomyopathy [published online July 22, 2015]. Int J Genomics. doi:10.1155/2015/204823
  15. Boss N. Developing and marketing wellness care plans. Paper presented at: AAHA Tampa 2015 Yearly Conference; March 12–15, 2015; Tampa, FL. Accessed June 5, 2017.
  16. van Rooy D, Arnott ER, Early JB, McGreevy P, Wade CM. Holding back the genes: limitations of research into canine behavioral genetics. Canine Genet Epidemiol. 2014;1(7):1-77.
  17. Turner S. Breeding for healthy eyes—clinical and DNA-based diagnosis of inherited ocular disease. Paper presented at: 2012 NAVC Conference; January 14–18, 2012; Orlando, FL. Accessed June 5, 2017. 
  18. Current canine research at the AHT. Animal Health Trust. Accessed June 5, 2017.
  19. PennGen test viewer. University of Pennsylvania School of Veterinary Medicine. Updated 2017. Accessed 2017.

Colleen Ruderman

RVT, VTS (SAIM) BluePearl Veterinary Partners, Sandy Springs, Georgia

Colleen Ruderman, RVT, VTS (SAIM), has worked at BluePearl Veterinary Partners for the last 13 years. After earning her RVT certification in 2001, she discovered a love for internal medicine and teaching and earned her VTS certification in small animal internal medicine in 2008. Colleen has worked with animals since she was 15, beginning in general practice and then moving to emergency and critical care, always with a focus on nursing and client education. Colleen is currently the general member-at-large for the Academy of Internal Medicine for Veterinary Technicians and has previously held many board positions. She is currently based in the Sandy Springs practice and involved in training and development for the 3 BluePearl Veterinary Partner practices in Georgia.

FUN FACT: Colleen currently lives in Atlanta, Georgia, with her husband, Mike, and her 2 cats, Pico de Gato and Hoxton. Her hobbies include reading, weightlifting (her current maximum front squat is 230 lb), and crafting (mainly catnip toys). She loves Elvis Presley and any type of horror movie!

Material from Veterinary Team Brief may not be reproduced, distributed, or used in whole or in part without prior permission of Educational Concepts, LLC. For questions or inquiries please contact us.

Veterinary Team Brief delivers practical skills for team-based medicine—with clinical strategies for team training, peer-reviewed credibility, concise content, essential training modules, and easy-to-implement protocols. From the publisher of Clinician's Brief.